cdf
              "upper")Return the CDF of a univariate distribution evaluated at x.
 cdf is a wrapper for the univariate cumulative distribution functions
 available in the statistics package.  See the corresponding functions’ help
 to learn the signification of the parameters after x.
 p = cdf (name, x, A) returns the CDF for the
 one-parameter distribution family specified by name and the
 distribution parameter A, evaluated at the values in x.
 p = cdf (name, x, A, B) returns the CDF
 for the two-parameter distribution family specified by name and the
 distribution parameters A and B, evaluated at the values in
 x.
 p = cdf (name, x, A, B, C) returns
 the CDF for the three-parameter distribution family specified by name
 and the distribution parameters A, B, and C, evaluated at
 the values in x.
 p = cdf (…,  returns the complement of the
 CDF using an algorithm that more accurately computes the extreme upper-tail
 probabilities.  "upper")"upper" can follow any of the input arguments in the
 previous syntaxes.
 name must be a char string of the name or the abbreviation of the
 desired cumulative distribution function as listed in the followng table.
 The last column shows the number of required parameters that should be parsed
 after x to the desired CDF.  The optional input argument
 "upper" does not count in the required number of parameters.
| Distribution Name | Abbreviation | Input Parameters | ||
|---|---|---|---|---|
| "Beta" | "beta" | 2 | ||
| "Binomial" | "bino" | 2 | ||
| "Birnbaum-Saunders" | "bisa" | 2 | ||
| "Burr" | "burr" | 3 | ||
| "Cauchy" | "cauchy" | 2 | ||
| "Chi-squared" | "chi2" | 1 | ||
| "Extreme Value" | "ev" | 2 | ||
| "Exponential" | "exp" | 1 | ||
| "F-Distribution" | "f" | 2 | ||
| "Gamma" | "gam" | 2 | ||
| "Geometric" | "geo" | 1 | ||
| "Generalized Extreme Value" | "gev" | 3 | ||
| "Generalized Pareto" | "gp" | 3 | ||
| "Gumbel" | "gumbel" | 2 | ||
| "Half-normal" | "hn" | 2 | ||
| "Hypergeometric" | "hyge" | 3 | ||
| "Inverse Gaussian" | "invg" | 2 | ||
| "Laplace" | "laplace" | 2 | ||
| "Logistic" | "logi" | 2 | ||
| "Log-Logistic" | "logl" | 2 | ||
| "Lognormal" | "logn" | 2 | ||
| "Nakagami" | "naka" | 2 | ||
| "Negative Binomial" | "nbin" | 2 | ||
| "Noncentral F-Distribution" | "ncf" | 3 | ||
| "Noncentral Student T" | "nct" | 2 | ||
| "Noncentral Chi-Squared" | "ncx2" | 2 | ||
| "Normal" | "norm" | 2 | ||
| "Poisson" | "poiss" | 1 | ||
| "Rayleigh" | "rayl" | 1 | ||
| "Rician" | "rice" | 2 | ||
| "Student T" | "t" | 1 | ||
| "location-scale T" | "tls" | 3 | ||
| "Triangular" | "tri" | 3 | ||
| "Discrete Uniform" | "unid" | 1 | ||
| "Uniform" | "unif" | 2 | ||
| "Von Mises" | "vm" | 2 | ||
| "Weibull" | "wbl" | 2 | 
See also: icdf, pdf, cdf, betacdf, binocdf, bisacdf, burrcdf, cauchycdf, chi2cdf, evcdf, expcdf, fcdf, gamcdf, geocdf, gevcdf, gpcdf, gumbelcdf, hncdf, hygecdf, invgcdf, laplacecdf, logicdf, loglcdf, logncdf, nakacdf, nbincdf, ncfcdf, nctcdf, ncx2cdf, normcdf, poisscdf, raylcdf, ricecdf, tcdf, tricdf, unidcdf, unifcdf, vmcdf, wblcdf
Source Code: cdf